Effect of Different Distance Measures on the Performance of K-Means Algorithm: An Experimental Study in Matlab
نویسندگان
چکیده
K-means algorithm is a very popular clustering algorithm which is famous for its simplicity. Distance measure plays a very important rule on the performance of this algorithm. We have different distance measure techniques available. But choosing a proper technique for distance calculation is totally dependent on the type of the data that we are going to cluster. In this paper an experimental study is done in Matlab to cluster the iris and wine data sets with different distance measures and thereby observing the variation of the performances shown. KeywordsClustering, K Means, Iris, Wine, Matlab
منابع مشابه
A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملWeighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملیک الگوریتم ردیابی خودرو مبتنی بر ویژگی با استفاده از گروهبندی سلسله مراتبی ادغام و تقسیم
Vehicle tracking is an important issue in Intelligence Transportation Systems (ITS) to estimate the location of vehicle in the next frame. In this paper, a feature-based vehicle tracking algorithm using Kanade-Lucas-Tomasi (KLT) feature tracker is developed. In this algorithm, a merge and split-based hierarchical two-stage grouping algorithm is proposed to represent vehicles from the tracked fe...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1405.7471 شماره
صفحات -
تاریخ انتشار 2014